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Disruption of wavefronts: statistics of dislocations in 
incoherent Gaussian random waves 

M V Berry 
H H Wills Physics Laboratory, Bristol University, I’yndall Avenue, Bristol BS8 lTL, UK 

Received 1 August 1977 

Abstract. Wavefront dislocations4.e. singularities of the phase of a wave $ in the form of 
moving lines in space where i$I vanishes-are studied for initially plane waves that have 
passed through a random space and time-dependent phase-changing screen. For trans- 
mitted waves that are Gaussian random, incoherent, quasi-monochromatic and paraxial 
the following quantities are calculated in terms of the statistics of the phase screen: 
dislocation densities, i.e. the average number of dislocation lines piercing unit area of 
variously-oriented surfaces, and dislocation juxes, i.e. the average number of dislocation 
lines crossing unit length of variously-directed lines in unit time. For a ‘corrugated’ screen 
(i.e. one where the phase varies only in one direction) all dislocations are of ‘edge’ type. As 
the statistics of the screen are made more isotropic the dislocations retain predominantly 
edge character if the screen is moving fast enough, but become predominantly of ‘screw’ 
character if the screen is static. 

1. Introduction 

A wave t,h travelling through space often contains moving ‘dislocation lines’ (Nye and 
Berry 1974) where the wavefronts (surfaces of constant phase) have singularities. On 
dislocations vanishes and near dislocations the vector field formed by the gradient 
of the phase of JI is that of a vortex (see also Dirac 1931, Riess 1970a, b, 1976, 
Hirschfelder et a1 1974a, b, Hirschfelder and Tang 1976a, b). My purpose here is to 
study some statistical properties of the tangle of dislocation lines in waves that are 
random-for example as a result of traversing an irregular refracting medium or being 
reflected from a rough surface. Walford et aZ(1977) have made a direct observation of 
dislocations in random radio waves reflected from the subglacial topography of Devon 
Island in the Arctic, 

The degree of disruption of wavefronts is indicated by the densities and fluxes of 
dislocations near any event (x, y ,  z ,  t )  in the wave. Let i and j represent x, y or z. Then 
the dislocation density Nil is defined as the average number of dislocation lines 
piercing unit area of the ij plane. The dislocation flux N,, is defined as the average 
number of dislocation lines crossing unit length of the i direction in unit time. Each 
dislocation is counted once whatever its sign or strength (Nye and Berry 1974) so that 
Nij and Ni, are never negative. It will be convenient to denote densities and fluxes by 
NOB where CY and p represent x, y, z or t (and CY # p) .  

For a general random wave $ the calculation of Nme would present formidable 
difficulties. Therefore I employ instead what seems to be the simplest non-trivial 
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model. A monochromatic plane wave of unit amplitude and frequency w travels in the 
z direction with speed c and encounters a transparent space-and-time-dependent 
screen that imposes on it a phase 4(R,  t )  in the plane z = 0 (R denotes ( x ,  y)). q5 is a 
Gaussian random function of R and t whose gradients are small enough for all Fourier 
components of $ to travel in directions making only small angles with the I axis and to 
have frequencies close to W. Thus (I is paraxial and quasi-monochromatic. Next, (I 
itself will be assumed to be a Gaussian random function (Rice 1944, 1945, Longuet- 
Higgins 1956) of its variables. Finally, the variance &2 of the random phase screen will 
be assumed to exceed several squared radians, so that the mean value of $ itself, 
namely exp( - ~ $ ~ / 2 )  is negligible (in comparison with the RMS value of $) and I) is 
incoherent. In the near field of such a screen the effects of focusing make the statistics 
of I) strongly non-Gaussian (Berry 1977) but for sufficiently large z the assumed 
Gaussian statistics will always apply (Mercier 1962). 

The outcome of the analysis is a set of simple formulae (equations (49)-(52)) for 
Nap in terms of the statistical properties of the random phase screen, with rich physical 
content discussed in Q 6 .  

2. Statistical formulae 

Let the wave beyond the screen be written as 

$(Rt z,  t)=T(R, 29 t)+i77(R7 2, t ) .  (1) 

For events on a dislocation line, ]$I= 0 and so both the real and imaginary parts 6 and 
77 must vanish. Now consider a small area d of the ij plane at (R, z,  t) .  The number 
Nd of dislocation lines piercing d is 

where the Jacobian factor between modulus signs ensures that each dislocation 
contributes + 1 to Nd, and the subscripts on 5 and 77 denote derivatives with respect to 
i or j .  An analogous formula with i, t replacing i, j gives the number of dislocations 
crossing a length 9 of the i axis in time T, if 9T replaces d. Then the dislocation 
densities and fluxes NUB are obtained by setting d, 9 and T equal to unity and taking 
an ensemble average over the joint probability distribution P of 5 , ~  and their 
derivatives. This gives 

(There can be higher-order zeros of (I which are not dislocations (Nye and Berry 
1974) but such non-generic events will not affect the statistics calculated here.) 

By assumption, P is a joint Gaussian distribution in the six real random variables 
5, 77, tu, vu, 56, 778. Denote by x the row vector 
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and by Z the matrix of correlations 

-2 
5a 

50% 

50770 

where overbars denote ensemble averages. Then P has the form 

where Z-’ is the inverse of Z and XT the column vector corresponding to X. In writing 
this expression the assumption that 4 is incoherent has been employed, since all 
averages have been neglected. 

Two major steps are involved in evaluating the densities and fluxes NaO. The first is 
the calculation of the elements in the matrix of correlations; this will be carried out in 
0 4 using diffraction theory for (5 3) and averaging over the probability distribution 
of the random phase 4. The second is the evaluation of the sixfold integral (3). This 
will be carried out in § 5 .  

3. Diffraction theory 

Immediately beyond z = 0 the wave, having passed through the phase screen, is 

+(R, 0, t ) =  exp[i(4(R, t ) - w t ) ] .  (7) 

For any z > 0 the wave can be written as a sheaf of plane waves with transverse vectors 
K = (Kx, K y )  and frequencies w ’ ,  i.e. 

$(I?, z ,  t ) =  I[ d K I  dw’exp( i [ K . R + ( $ - K 2 ) 1 ’ 2 z - ~ ‘ t ] } a ( K ,  U ’ ) .  

Fourier inversion using (7) now gives a(K, w ’ )  as 

The approximation of quasi-monochromaticity and paraxiality consist in writing 

w ’ = w + f l  (10) 

(so that fl is a measure of departure from monochromaticity), and approximating the z 
wavenumber by 

l f 2  w + f l  cK2 
K’)  =c-%. 
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This gives 

where the phase factor exp[i(uz/c -ut)] has been dropped since it has no effect on the 
dislocations, where (L = 0. I shall make use of the fact that the expression (12) satisfies 
the 'paraxial wave equation' 

It will be convenient to take averages over products of (L and (L* rather than 6 and 
q, and then obtain the elements of Z (equation ( 5 ) )  from the relations 

- 1  -- - --  
I_ (14) 
'!a58 = 4 Re(rLcl(La* + (La(L6); 

toqP = 5 Im(+a+aX + (Lo&& 
TaTP = 5 Re((Lo(LaX - &(Ld 

-- 

where ihe meaning of the suffices a, p has now been slightly generalised to include 
products like &E where a factor is not differentiated. 

4. Calculating the matrix of correlations 

The final ingredient in the calculation of Z is a specification of the statistics of the 
phase screen 4(R, t ) .  The necessary quantities are the variance 2 and the autocor- 
relation C ( p ,  T )  defined by 

The mean products in (14) of wavefunctions (12) involve the following two averages 
over the Gaussian distribution of 4 : 

- - 
(the upper and lower signs refer to products (La$; and (Lo(LP respectively). 

Consider first (La$;. Formation of the product using the diffraction integral (12) 
leads to a twelvefold integral. Averaging with the aid of (16), together with obvious 
changes of variable, makes six of the integrations easy, and leads to 

- JI d K  J dR[exp[i(K.R-Rt-tRz/c-cK2z/2w)]], 

x[exp[i(K. R-Rt+Rz/c  - ~ K ~ z / 2 w ) ] ] ~  

x J j d p  J d T e x p [ i ( n T - K . p + ~ C ( p , T ) ) ] .  

The differentiations with respect to a and p bring down from the exponents a factor 
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where the last step results from integrating by parts. 
- Now each combination a, p must be treated separately. For the simplest product, 
$$*, it is obvious that F = 1, so 

- 
*** = 1. (19) 

The product $x$* involves a = x, p = 0 and (17) reveals that 

Fxo = i K,. (20) 

(18) now gives 

But this is zero, since for the smooth phase screens considered here C, when expanded 
in a polynomial in x,  y and T,  contains only terms of even order. Similar arguments 
give 

--- 
CLX** = *,** = *&* = 0. (22) 

Next, for the combination a = xI ,  p = xm where 1 or m denote x or y, 

- 
C(O,O)= -T Ch a* *1G= -2- axlax,,, 

where the obvious simplifying notation Cr, has been introduced. Similar arguments 
give 

The averages f o E h i c h  QI or 0 is t can be evaluated with the aid of the paraxial 
equation (13). For (cl&*, 

leading to - 
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For +,$?, 
R2 cRK2 
c 2w 

F,, = --++. 

The cubic term gives zero contribution, so that 

- 7  *& = - ctt. 
C 

Similarly, 

- 
For the final average of this type, namely (t,*:, 

R cK2 F = 

and a lengthy but straightforward calculation based on (18) gives 

after a term of lower order in has been neglected. 
According - to (14) the averages 2,q8 e-volved in I; (equation (5 ) )  depend on 

averages $Q& as well as on the averages i,hQ$$ just calculated. It follows from (16), 
however, that these averages are of order exp( - 2 7 )  and hence negligible for the 
incoherent waves considered here. 

When the elements of the matrix of correlations I; are evaluated using (14) and the 
averages (19)-(32) it is found to be block diagonal. Thus it is natural to write 

where 

-1 
* - 2  (34) 

5. Evaluating the densities and fluxes 

The fundamental quantities NQ@ are given by equation (3) as a sixfold integral. The 
integrations over 5 and 7 can easily be performed, and use of (6), (33) and (34) gives 

j.. .I dfQ d& dqQ dq@IYSYTl exp(-$YM-'YT), 
= ( 2 ~ ) ~  det A+ 

where 

(35) 
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and 

33 

(37) 

(In writing (35) use has been made of the fact, obvious from (34), that de tA+= 
det A- = Jde t  2.) 

To bring the integral (35) into a simple form the variables are transformed by 
simultaneously diagonalising the two quadratic forms YSYT and YM-l  YT.  This gives 

(detM)1/4 . . .I dp dq dr ds/A1p2+A2q2+A3r2 N u p  = ( 2 ~ ) ~  det A+ 

+ A4s21 exp[ -&I' + q 2  + r2 + s2)], 

det(SM - AI)  = 0. 

A = A = iddet M; 

(39) 

(40) 

(41) 

where A t ,  , . ., A 4  are eigenvalues defined by 

Explicit calculation then shows that 

A 3  = A 4  = -$Jdet M. 

(This result depends on the fact, which follows from (34), that the '+' and ' - '  
elements in (37) are equal.) Introduction of polar coordinates in the pq and rs planes, 
with radial variables 

U =i(p2+q2),  v = t(r2 + s2), (42) 
gives 

Tedious elementary calculations show that the value of the double integral is unity. 

be different it is always possible to choose (Y # z. Then (22) gives 
The evaluation of A+ and det M is simplified on realising that since a and p must 

- 
Im (L&* = 0,  (44) 

det A+ = ${&-4s*[(L&/B* - (Im WYI - (Re $&,*)'>. (45) 

(det M)3/4 = [(Ay1)22(Az1)33 - ((A;1>23)2]-3'2. (46) 

(det M)3'4 = (2 det A+)3/2. (47) 

which together with (19) leads to 
-- 

From (37), 

The elements of A-', when calculated from (34) using (19) and (44), lead to 
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Substitution into ( 4 3 )  now gives 

The various densities and fluxes can now be obtained explicitly by use of equations 
(22)-(32), with the following results: 

42 2 1 / 2  Nxy = - (CXXCY, - C A , )  9 

27r 
(49) 

( 5 2 )  7 3 / 2  2 1 / 2  N,, = - (4 ) [ - 2CdC,l, + c,: + 2 C J  277.2w 

(and similar equations for NYr and Nyl) .  These formulae are the main results of this 
paper. The quantities in the square roots are never negative; this follows on realising 
that the autocorrelation function (15) decays from unity in every direction from the 
origin in x, y, t space, and also that combinations CaaCpp- C$ represent the Gaussian 
curvature of C as a function of a and p and hence are never negative. 

6. Discussion 

To extract the physical content of the fundamental equations (49)-(52) it is helpful 
first to consider the case where the phase screen is cross-spectrally pure, so that the 
variations in x, y and t are independent and 

C - - T - 2  c x x -  =-L-2 x ,  c Y Y  = -L-2  Y ,  I f  - 
( 5 3 )  

Cxy = Cxl = Cy, = 0. 

Thus L,, L, are the correlation lengths of the screen in the x and y directions and T is 
its correlation time. Next the variance 2 of the phase is written as 

so that S is a measure of the amplitude of the undulations in wavefronts just beyond 
the screen. Finally, the densities and fluxes Nap will be replaced by dimensionless 
quantities Nap where Nij is the number of dislocation lines piercing a square of side 
equal to one wavelength, 27rc/w, in the ij plane and Nit is the number of dislocations 
crossing one wavelength of the i direction in one wave period, 27r/w. Nap can be 
written entirely in terms of the lengths L,, L,, cT and S as follows: 

N,, = 27rS2/L,Ly, 
1 2 2  2 Nxz =27rS2[1+zS c T (L;4+L;4)]1’2/L,cT, 

Arx1 = 2.rrS2/L,cT, 
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-4 112 Nzt = 2trS3[$(Li4 + L ,  )] lcT. 

An immediate conclusion from these formulae is that all quantities Nap are small 
compared with unity. This follows from the conditions C has to satisfy in order that $ 
be paraxial and quasi-monochromatic, namely 

SI L, << 1 ; SI Ly << 1 ; SIcT << 1 (59) 
(physically the wavefronts just beyond the screen have small slopes and ‘shiver’ much 
more slowly than c relative to the unperturbed wavefronts). Therefore the waves 
considered here are quite weakly dislocated-they appear like travelling plane waves 
for many wavelengths and periods around a typical event. 

Another conclusion concerns the average angle 6 made by the dislocations with 
the z axis. In the language of crystal physics, if 6 is small the dislocations are 
predominantly of ‘screw’ character (Nye and Berry 1974), while if 6 is near 7r/2 they 
are predominantly of ‘edge’ character. A measure of 6 is 

which by virtue of (55) and (56) is 

Consider first the case where the screen is “corrugated’ in the x direction, i.e. 
L, +a. Then (61) gives 6 = 7r/2 so that all dislocations are of edge type (this is 
intuitively obvious). Next consider the case where the phase screen is isotropically 
disordered, i.e. 

L, = L, = L. (62) 
Then (61) becomes 

For a static screen T + CO so that with use of (59) this becomes 

6-J - iSIL  (64) 
which is small, so that for an isotropic static screen the dislocations are predominantly 
of screw type. However, if the isotropic screen is not static, but moves so fast that 
cT << L (a condition not violating (59)), then 

T cT ezz-LJ2, 
so that the dislocations are now predominantly of edge type. 

Finally, it is interesting to show the consistency of the basic formulae (49)-(52) 
when the phase screen is moving rigidly along the x axis with speed o. It is then not 
cross-spectrally pure, and 

C(x, y ,  t )  = C ( X  - or, y) .  (66) 
In this case the pattern of dislocation lines simply translates rigidly in the x direction. 
Therefore N,, (equation (51)) must vanish, and indeed this follows from (66), which 
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implies that C,,C, - C; is zero. Also Nxy and N,, must be independent of U, and this 
also follows from (66). Lastly, the densities and fluxes must obey the ‘continuity 
equations’ 

Nzi = UN,, ; Nyi = ~Nxy, (67) 

and this also follows from (66). 

7. Concluding remarks 

It would be desirable to extend the analysis of this paper in several directions. 
In the first place, the transmission of quasi-monochromatic pulses with static 

screens s h u  be studied. For incoherent waves the result (48) will still hold if& 
term (Im $s$*)2 and also the whole expression in curly brackets are divided by +t,b* 
(to make all three terms dimensionless with respect to $). But the averages etc 
will no longer be given by the expressions in 0 4; they could be-luated, for example, 
by generalising techniques I introduced in an earlier study of $$* for pulses reflected 
by rough surfaces (Berry 1973). This generalisation to pulses is required to study 
dislocations produced during echo sounding. 

In the second place, the restriction of incoherence (i.e. I$\ << ( $ 1  ) should be 
relaxed, to enable a description to be given of the ‘healing’ of the disrupted wavefronts 
as g+ 0. Preliminary arguments suggest that the densities and fluxes will contain a 
factor 

7 

- 2  2 

- 
(1  -e-** as z -* 03 (incoherent) 

suggesting that the dislocations are eliminated very rapidly as 3 gets small and the 
wave becomes coherent. 

In the third place, the restriction to Gaussian randomness should be relaxed. This 
would enable a description to be given of the dislocations for z in the focusing regime, 
which is important when z is large since it is a transition zone, where the wave is 
non-Gaussian (Berry 1977), between incoherent (z +a) and coherent (t + 0) Gaus- 
sian behaviour. I conjecture that for a static phase screen with near-isotropic disorder 
most of the dislocations come into the focusing regime from large z (where they have 
predominantly screw character, as shown in § 6), turn over like ‘hairpins’ near elliptic 
and hyperbolic umbilic catastrophe focal points (Berry 1976, Berry and Hannay 1977) 
and then retreat back to large z .  This conjecture is based on the results of a detailed 
experimental, analytical and computational study of the elliptic umbilic diffraction 
catastrophe made in conjunction with J F Nye and F J Wright (unpublished). 

In the fourth place, the statistical topology of the dislocations should be in- 
vestigated. Do most of them form closed loops or are they of infinite length? When 
the screen is time dependent do dislocations encountering one another simply pass 
through without interaction, or do they change topology? 

And finally, the restrictions of paraxiality and quasi-monochromaticity should be 
relaxed. One interesting problem that would then become amenable to study is the 
dislocation structure of black-body radiation. 



Dislocations in random watres 37 

Acknowledgments 

I thank Professor J F Nye for many helpful discussions on this subject, and Dr J H 
Hannay for the useful suggestion that the calculations would be simplified by employ- 
ing the paraxial wave equation (13). 

References 

Berry M V 1973 Phil. Trans. R. Soc. A 273 611-58 

- 1977 J. Phys. A:  Marh. Gen. 10 2061-81 
Berry M V and Hannay J H 1977 J. Phys. A:  Marh. Gen. 10 1809-21 
Dirac P A M 1931 Proc. R. Soc. A 133 60-72 
Hirschfelder J, Christoph A C and Palke W E 1974a J. Chem. Phys. 61 5435-55 
Hirschfelder J, Goebel C J and Bruch L W 1974b J. Chem. Phys. 61 5456-9 
Hirschfelder J and Tang K T 1976a J. Chem. Phys. 64 760-85 
- 1976b J. Chem. Phys. 65 470-86 
Longuet-Higgins M S 1956 Phil. Trans. R. Soc. A 249 321-87 
Mercier R P 1962 Proc. Camb. Phil. Soc. 58 382400  
Nye J F and Berry M V 1974 Proc. R. Soc. A 336 165-90 
Rice S 0 1944 Bell. Sysr. Tech. J. 23 282-332 
- 1945 Bell. Sysr. Tech. J. 24 46-156 
Riess J 1970a Ann. Phys., NY 57 301-21 Erratum 67 347 
- 1970b Phys. Rev. D 2 647-53 
- 1976 Phys. Rev. B 13 3862-9 
Walford M E R, Holdorf P C and Oakberg R G 1977 J. Glaciol. 18 217-29 

- 1976 Ado. Phys. 25 1-26 


